Nanohelices from planar polymer self-assembled in carbon nanotubes
نویسندگان
چکیده
The polymer possessing with planar structure can be activated and guided to encapsulate the inner space of SWNT and form a helix through van der Waals interaction and the π-π stacking effect between the polymer and the inner surface of SWNT. The SWNT size, the nanostructure and flexibility of polymer chain are all determine the final structures. The basic interaction between the polymer and the nanotubes is investigated, and the condition and mechanism of the helix-forming are explained particularly. Hybrid polymers improve the ability of the helix formation. This study provides scientific basis for fabricating helical polymers encapsulated in SWNTs and eventually on their applications in various areas.
منابع مشابه
Single wall carbon nanotube templated oriented crystallization of poly(vinyl alcohol)
Shearing of poly(vinyl alcohol) (PVA)/single wall carbon nanotube (SWNT) dispersions result in the formation of self-assembled oriented PVA/SWNT fibers or ribbons, while PVA solution results in the formation of unoriented fibers. Diameter/width and length of these self-assembled fibers was 5–45 mm and 0.5–3 mm, respectively. High-resolution transmission electron micrographs showed well resolved...
متن کاملPolyelectrolytes: Influence on Evaporative Self-Assembly of Particles and Assembly of Multilayers with Polymers, Nanoparticles and Carbon Nanotubes
Assembling polyelectrolyte multilayers in a bottom-up approach is reported for polymers, particles, nanoparticles, and carbon nanotubes. Effects of polyelectrolyte multilayers on evaporative self-assembly of particles, which are of interest to a number of applications including photonic crystals, films and substrates, are investigated. Polyelectrolyte multilayer coatings bring multifunctionalit...
متن کاملUltrathin anisotropic films assembled from individual single-walled carbon nanotubes and amine polymers.
Oxidized individual single-walled carbon nanotubes and amine polymers have been assembled into 11-32-nm-thick well-ordered conductive films. The films show highly anisotropic electrical conductivity, which is dominated by the nanotubes in the horizontal plane and by polymer-mediated tunneling in the vertical direction. The ratio of the "along" to "across" conductivity is approximately 10(3). Th...
متن کاملSelf-assembly and its impact on interfacial charge transfer in carbon nanotube/P3HT solar cells.
Charge transfer at the interface of conjugated polymer and nanoscale inorganic acceptors is pivotal in determining the efficiency of excitonic solar cells. Despite intense efforts, carbon nanotube/polymer solar cells have resulted in disappointing efficiencies (<2%) due in large part to poor charge transfer at the interface. While the interfacial energy level alignment is clearly important, the...
متن کاملGraphene Grows Up | SPIE Newsroom: SPIE
Nanoscale carbon has been making headlines for more than two decades. Whether furled up in carbon nanotubes or assembled into cagelike fullerenes, carbon at the atomic scale shows great potential in everything from photovoltaics to ultra-strong composite materials. Now, graphene -thin, planar sheets of carbon -promises to advance photonics with improved detectors, display circuitry, and even em...
متن کامل